Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(8): 6949-6955, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38334442

RESUMO

The passage of molecules through membranes is known to follow an Arrhenius-like kinetics, i.e. the flux is accelerated upon heating and vice versa. There exist though stepwise processes whose rates can decrease with temperature if, for example, adsorbed intermediates are involved. In this study, we perform temperature-variable permeation experiments in the range from -50 to +50 °C and observe anti-Arrhenius behaviour of water and ammonia permeating in two-dimensional freestanding carbon nanomembranes (CNMs). The permeation rate of water vapour is found to decrease many-fold with warming, while the passage of ammonia molecules strongly increases when the membrane is cooled down to the dew point. Liquefaction of isobutylene shows no enhancement for its transmembrane flux which is consistent with the material's pore architecture. The effects are described by the Clausius-Clapeyron relationship and highlight the key role of gas-surface interactions in two-dimensional membranes.

2.
Small ; 19(9): e2205602, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36521931

RESUMO

2D membranes such as artificially perforated graphene are deemed to bring great advantages for molecular separation. However, there is a lack of structure-property correlations in graphene membranes as neither the atomic configurations nor the number of introduced sub-nanometer defects are known precisely. Recently, bilayer silica has emerged as an inherent 2D membrane with an unprecedentedly high areal density of well-defined pores. Mass transfer experiments with free-standing SiO2 bilayers demonstrated a strong preference for condensable fluids over inert species, and the measured membrane selectivity revealed a key role of intermolecular forces in ångstrom-scale openings. In this study, vapor permeation measurements are combined with quantitative adsorption experiments and density functional theory (DFT) calculations to get insights into the mechanism of surface-mediated transport in vitreous 2D silicon dioxide. The membranes are shown to exhibit molecular sieving performance when exposed to vaporous methanol, ethanol, isopropanol, and tert-butanol. The results are normalized to the coverage of physisorbed molecules and agree well with the calculated energy barriers.

3.
Phys Chem Chem Phys ; 24(20): 12563-12568, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35579299

RESUMO

Molecular adsorption on 2D membranes plays a key role in surface-mediated permeation offering selectivity benefits for chemical separation. As many vaporous compounds are demonstrated to pass through 2D membranes faster than ordinary gases, it is important to determine their surface coverage on flat substrates under realistic conditions. Here we present a viable reference system to quantify polarization-modulation infrared reflection-absorption spectroscopy (PM-IRAS) measurements with organic vapors. Microscopic deposits of poly(1-trimethylsilyl-1-propyne) (PTMSP) onto metallic films are introduced as a matrix that soaks up liquid substances and accommodates them during the spectral acquisition. The corresponding molar uptake is obtained with a microbalance and converted into an areal density allowing for direct coverage-intensity relationships. We probe room-temperature physisorption of methanol, ethanol, and n-propanol on supported carbon nanomembranes and correlate the number of adsorbates with the mass transfer rates in free-standing layers. This work opens a new dimension for adsorption controlled permeation (ACP) studies.

4.
ACS Appl Mater Interfaces ; 14(7): 9433-9441, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157431

RESUMO

Despite the prospects of intrinsically porous planar nanomaterials in separation applications, their synthesis on a large scale remains challenging. In particular, preparing water-selective carbon nanomembranes (CNMs) from self-assembled monolayers (SAMs) is limited by the cost of epitaxial metal substrates and molecular precursors with specific chemical functionalities. In this work, we present a facile fabrication of CNMs from polycyclic aromatic hydrocarbons (PAHs) that are drop-cast onto arbitrary supports, including foils and metalized films. The electron-induced carbonization is shown to result in continuous membranes of variable thickness, and the material is characterized with a number of spectroscopic and microscopic techniques. Permeation measurements with freestanding membranes reveal a high degree of porosity, but the selectivity is found to strongly depend on the thickness. While the permeance of helium remains almost the same for 6.5 and 3.0 nm thick CNMs, water permeance increases by 2 orders of magnitude. We rationalize the membrane performance with the help of kinetic modeling and vapor adsorption experiments.

5.
Nano Lett ; 22(3): 1287-1293, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044780

RESUMO

Graphene and other single-layer structures are pursued as high-flux separation membranes, although imparting porosity endangers their crystalline integrity. In contrast, bilayer silica composed of corner-sharing (SiO4) units is foreseen to be permeable for small molecules due to its intrinsic lattice openings. This study sheds light on the mass transport properties of freestanding 2D SiO2 upon using atomic layer deposition (ALD) to grow large-area films on Au/mica substrates followed by transfer onto Si3N4 windows. Permeation experiments with gaseous and vaporous substances reveal the suspended material to be porous, but the membrane selectivity appears to diverge from the size exclusion principle. Whereas the passage of inert gas molecules is hindered with a permeance below 10-7 mol·s-1·m-2·Pa-1, condensable species like water are found to cross vitreous bilayer silica a thousand times faster in accordance with their superficial affinity. This work paves the way for bilayer oxides to be addressed as inherent 2D membranes.


Assuntos
Grafite , Dióxido de Silício , Gases/química , Óxidos , Porosidade , Dióxido de Silício/química
6.
Chemphyschem ; 23(2): e202100732, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34817107

RESUMO

Two-dimensional (2D) membranes display extraordinary mass transfer properties, in particular for the permeation of gaseous substances. Their ultimate thickness not only ensures the shortest diffusion pathways, but also makes the membrane surface play a significant role in accommodating and guiding the permeating molecules. As saturated vapors of water and organic solvents are often observed to pass 2D membranes faster than inert gases, condensation is believed to be responsible for surface-mediated transport. Here, we present a spectroscopic experiment to probe adsorption of condensable species on 2D membranes under realistic conditions. Polarization-modulation infrared reflection absorption spectroscopy (PM IRAS) is coupled with a reaction chamber and a vacuum system to control the vaporous environments. The measurements are demonstrated to yield quantitative information on the amount of adsorbates onto supported 2D layers. As a case study, the azeotropic mixture of water and propanol is revealed to maintain its molar composition upon interaction with carbon nanomembranes.


Assuntos
Gases , Água , Adsorção , Gases/química , Solventes/química , Espectrofotometria Infravermelho , Água/química
7.
Small ; 17(52): e2104392, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713582

RESUMO

Unlike graphene and similar structures, 2D covalent organic frameworks (2D COFs) exhibit intrinsic porosity with a high areal density of well-defined and uniform openings. Given the pore size adjustability, 2D COFs are likely to outperform artificially perforated inorganic layers with respect to their prospects in membrane separation. Yet, exploring the mass transport in 2D COFs is hidden by the lack of laterally extended free-standing membranes. This work reports on direct molecular permeation measurements with single crystals of an interfacially synthesized boronate ester 2D COF. In accordance with the material topography, the atmospheric and noble gases readily pass the suspended nanosheets while their areal porosity is quantified to be almost 40% exceeding that in any 2D membranes known. However, bulkier aromatic hydrocarbons are found to deviate substantially from Graham's law of diffusion. Counterintuitively, the permeation rate is demonstrated to rise from benzene to toluene and further to xylene despite the increase in the molecular mass and dimensions. The results are interpreted in terms of adsorption-mediated flow that appears to be an important transport mechanism for microporous planar nanomaterials.

8.
Phys Chem Chem Phys ; 22(17): 9808-9814, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32337528

RESUMO

Ionic liquids and nanoscale membranes are both considered as promising functional components to design next-generation gas separation technologies. Herein, we combine free-standing carbon nanomembranes (CNMs) with [bmim][Tf2N] ionic liquid having affinity to carbon dioxide, and explore molecular permeation through such a composite membrane. Gas transport measurements reveal an increase in the transmembrane flux of carbon dioxide as compared to that of bare CNMs, whereas passage of helium is found to be suppressed in accordance with the solubility constants. Upon exposure to water vapor, the behavior of the hybrid membrane appears to differ strikingly as hydrophilic properties of CNMs are camouflaged by the hydrophobic nature of the ionic liquid. Kinetic simulations are conducted to account for the change in permeation mechanism, and the results agree with the experimental data obtained. Our study confirms that molecular transport in two-dimensional membranes can be tailored by imparting chemical functionalities, but at the same time highlights practical challenges in surface modification.

9.
Chemphyschem ; 21(10): 1006-1011, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32202365

RESUMO

Self-assembled monolayers (SAMs) serve as convenient platform for fabricating carbon nanomembranes (CNMs) of extended lateral dimensions. Highly porous CNMs are emerging as interesting materials for membrane technologies as they exhibit selectivity for water permeation and, owing to their reduced dimensionality, promise increased energy efficiency compared to established systems. In the present study terphenylcarboxylate SAMs, prepared on silver underpotential deposited on Au and irradiated by 100 eV electrons, were successfully converted into free-standing CNMs. Infrared and X-ray photoelectron spectroscopy reveal pronounced chemical changes both of the anchoring carboxylate moiety and the aromatic backbone upon electron irradiation. Permeation studies showed high specificity for water as demonstrated by the separation from tetrahydrofuran. Compared to thiols on gold, the standard CNM precursor system, the carboxylic acid based SAM exhibits equivalent characteristics. This suggests that electron-induced carbonization is insensitive to the particular choice of the anchor moiety and, therefore, the choice of precursor molecules can be extended to the versatile class of aromatic carboxylic acids.

10.
J Phys Chem Lett ; 11(1): 238-242, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846582

RESUMO

Ultrathin nanostructured membranes are widely pursued to apply into different processes ranging from air separation to seawater desalination. Here, freestanding carbon nanomembranes (CNMs) are employed to dehydrate vaporous alcohols at room temperature. The structure of the microporous material is addressed by measuring permeation rates of homologous n-alkanols. To examine the separation performance, we introduce a model heavy water/n-propanol azeotrope. While ordinary nanomembranes show moderate selectivity of around 300, complete rejection of organic molecules is achieved upon stacking two CNM layers. Furthermore, the mixture experiments with the stacks demonstrate a 10-fold slowdown in the transmembrane diffusion of water as compared to both the single-layer material and pure vapor. We discuss the observed effect as a "molecular jam" in the interlayer spacing, which effectively disrupts the collective flow of liquefied water. Our work sheds light on molecular transport under nanoconfinement.

11.
J Phys Chem Lett ; 10(18): 5598-5601, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31483679

RESUMO

Planar nanomaterials finished with transverse ducts represent an intriguing avenue for exploring interfacial phenomena. Due to their small thickness, the kinetics of molecular diffusion across the channels is likely to be dominated by entrance events. Therefore, measuring transport rates in freestanding films can yield valuable information on surface processes. In this work, we study permeation of gases in carbon nanomembranes (CNMs) when accompanied by saturated water vapor. The experimental data reveal a manifold increase in transmembrane fluxes compared to dry conditions. Gas molecules are found to be trapped in adsorbed water, which enhances their translocation likelihood. We demonstrate that the permeance correlates with the vapor relative pressure and discuss the observed crossing mechanism in terms of water condensation and Henry's law. Our findings provide guidance for designing gas separation membranes upon two-dimensional materials.

12.
Phys Chem Chem Phys ; 21(28): 15471-15477, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31257369

RESUMO

Mass transfer across porous materials with nanoscale thickness is of great interest in terms of both fundamentals of fluid dynamics and practical challenges of membrane separation. In particular, few-atom thick sieves are viewed as attractive candidates to achieve ultimate permeability without compromising membrane selectivity. In this work, we introduce a vacuum system for studying vapour and gas permeation in micrometre-sized samples of suspended nanometre-thick films. Steady-state permeation rates are measured with a mass-spectrometer directly connected to the downstream side of a membrane cell. A built-in nanoaperture is used as a reference to calibrate the detector in situ. A feed compartment is designed in a way that allows for preparing gaseous mixtures of variable composition, including vapours of volatile liquids. Room-temperature measurements with carbon nanomembranes confirm that this material is selective to water vapour and can efficiently separate it from mixtures with a variety of gases and organic compounds. We demonstrate that a high permeance for water is maintained regardless of the molar fraction and discuss its strong pressure dependence by invoking adsorption-related formalism.

13.
ACS Nano ; 12(5): 4695-4701, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29741359

RESUMO

The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10-4 mol·m-2·s-1·Pa-1, as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s-1·Pa-1. This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.

14.
Angew Chem Int Ed Engl ; 54(47): 13942-6, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26457889

RESUMO

We present a mechanistic study on the interaction of water with a well-defined model Fe3O4(111) surface that was investigated by a combination of direct calorimetric measurements of adsorption energies, infrared vibrational spectroscopy, and calculations bases on density functional theory (DFT). We show that the adsorption energy of water (101 kJ mol(-1)) is considerably higher than all previously reported values obtained by indirect desorption-based methods. By employing (18)O-labeled water molecules and an Fe3 O4 substrate, we proved that the generally accepted simple model of water dissociation to form two individual OH groups per water molecule is not correct. DFT calculations suggest formation of a dimer, which consists of one water molecule dissociated into two OH groups and another non-dissociated water molecule creating a thermodynamically very stable dimer-like complex.

15.
Phys Chem Chem Phys ; 17(35): 22726-35, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26256836

RESUMO

Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes.


Assuntos
Butiratos/química , Etilaminas/química , Naftalenos/química , Platina/química , Adsorção , Calorimetria , Conformação Molecular , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...